The catalytic subunit of the cAMP-dependent protein kinase of ovine sperm flagella has a unique amino-terminal sequence.

نویسندگان

  • J T San Agustin
  • J D Leszyk
  • L M Nuwaysir
  • G B Witman
چکیده

The basis for the unusual properties of the catalytic subunit (C) of ram sperm cAMP-dependent protein kinase was investigated. Ram sperm C was purified and found by mass spectrometry (MS) to be approximately 890 Da smaller than Calpha, the predominant somatic isoform. Partial internal amino acid sequence from ram sperm C was an exact match to that of bovine Calpha, but differed from the predicted sequences for the Cbeta and Cgamma isoforms. MS analysis of 2-nitro-5-thiocyanatobenzoic acid fragments showed that the mass difference originated in the amino-terminal region. A unique blocked amino-terminal fragment was isolated from sperm C and sequenced by a combination of tandem mass spectrometry and Edman degradation of a subfragment. The results revealed that the amino-terminal myristate and the first 14 amino acids of Calpha are replaced by an amino-terminal acetate and six different amino acids in sperm C. The predicted mass difference due to these changes is 899 Da. The region of homology between sperm C and Calpha begins at the exon 1/exon 2 boundary in Calpha, suggesting that sperm C results from use of an alternate exon 1 in the Calpha gene. The different amino terminus of sperm C may be related to a unique requirement for localization of the "free" C subunit within the sperm flagellum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE EFFECT OF THEOPHYLLINE ON THE KINETICS OF cAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT, cAMP, PROTEIN KINASE INHIBITOR AND THEIR RELATIONSHIP IN LUNG TISSUE

We have investigated the effect of theophylline on the kinetics of the catalytic subunit of protein kinase and related factors in lung tissue. The results show that the point of highest concentration of the C subunit of protein kinase which is active in casein phosphorylation is at 3h of incubation time, but in the presence of 100 Ilg/ InL and 10µg/mL theophylline, this is shifted to I.S an...

متن کامل

Human testis cDNA for the regulatory subunit RII alpha of cAMP-dependent protein kinase encodes an alternate amino-terminal region.

Phosphorylations catalyzed by cAMP-dependent protein kinase are essential for sperm motility, and type II cAMP-dependent protein kinase in mature sperm has been shown to be firmly bound to the flagellum via the regulatory subunit, RII. The present study documents high-levelled expression of a human, testis-specific RII alpha mRNA (2.0 kb) analogous to the rat mRNA which is induced in haploid ge...

متن کامل

The Unique Catalytic Subunit of Sperm cAMP- dependent Protein Kinase Is the Product of an Alternative Ca mRNA Expressed Specifically in Spermatogenic Cells

cAMP-dependent protein kinase has a central role in the control of mammalian sperm capacitation and motility. Previous protein biochemical studies indicated that the only cAMP-dependent protein kinase catalytic subunit (C) in ovine sperm is an unusual isoform, termed Cs, whose amino terminus differs from those of published C isoforms of other species. Isolation and sequencing of cDNA clones enc...

متن کامل

The unique catalytic subunit of sperm cAMP-dependent protein kinase is the product of an alternative Calpha mRNA expressed specifically in spermatogenic cells.

cAMP-dependent protein kinase has a central role in the control of mammalian sperm capacitation and motility. Previous protein biochemical studies indicated that the only cAMP-dependent protein kinase catalytic subunit (C) in ovine sperm is an unusual isoform, termed C(s), whose amino terminus differs from those of published C isoforms of other species. Isolation and sequencing of cDNA clones e...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 38  شماره 

صفحات  -

تاریخ انتشار 1998